Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility.
نویسندگان
چکیده
Biomolecular motor proteins have the potential to be used as 'nano-engines' for controlled bioseparations and powering nano- and microelectromechanical systems. In order to engineer such systems, biocompatible nanofabrication processes are needed. In this work, we demonstrate an electron beam nanolithography process for patterning kinesin motor proteins. This process was then used to fabricate discontinuous kinesin tracks to study the directionality of microtubule movement under the exclusive influence of surface bound patterned kinesin. Microtubules moved much farther than predicted from a model assuming infinite microtubule stiffness on tracks with discontinuities of 3 mum or less, consistent with a free-end searching mechanism. As the track discontinuities exceeded 3 mum, the measured and predicted propagation distances converged. Observations of partially fixed microtubules suggest that this behavior results from the interaction of the microtubules with the surface and is not governed predominately by the microtubule flexural rigidity.
منابع مشابه
Lithographically Patterned Channels Spatially Segregate Kinesin Motor Activity and Effectively Guide Microtubule Movements
To extract useful work from biological motor proteins, it is necessary to orient microtubules traveling over kinesin-coated surfaces properly. Toward this goal, we have used microfabrication to construct 1.5-μm-deep channels in SU-8 photoresist patterned on glass. Although motor proteins bind to all surfaces, these channels localize motility exclusively to the glass surface, and the photoresist...
متن کاملDifferential regulation of dynein and kinesin motor proteins by tau.
Dynein and kinesin motor proteins transport cellular cargoes toward opposite ends of microtubule tracks. In neurons, microtubules are abundantly decorated with microtubule-associated proteins (MAPs) such as tau. Motor proteins thus encounter MAPs frequently along their path. To determine the effects of tau on dynein and kinesin motility, we conducted single-molecule studies of motor proteins mo...
متن کاملThe role of casein in supporting the operation of surface bound kinesin
Microtubules and associated motor proteins such as kinesin are envisioned for applications such as bioseparation and molecular sorting to powering hybrid synthetic mechanical devices. One of the challenges in realizing such systems is retaining motor functionality on device surfaces. Kinesin motors adsorbed onto glass surfaces lose their functionality or ability to interact with microtubules if...
متن کاملThe Cytoplasmic Dynein and Kinesin Motors Have Interdependent Roles in Patterning the Drosophila Oocyte
BACKGROUND Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors ...
متن کاملTau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical microdevices
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2009